

HINTS & SOLUTION WORKBOOK-1 Stoichiometry - I

Daily Tutorial Sheet-12

Level - 3

141.(C) M.M of
$$H_2O = 2 \times M_H + M_O = 2 \times \frac{M_{e^{12}}}{6} + \frac{M_{C^{12}}}{6} \times 16 = 36$$

142.(B)
$$M_{C_6H_8} = 80 \, g \, / \, mol \, .$$

Each mole of C_6H_8 contains 3 moles of double bonds

$$\Rightarrow \frac{80}{3}$$
 g of C_6H_8 contains 1 moles of double bonds.

143.(A)
$$2X + \frac{5}{2}O_2 \longrightarrow X_2O_5$$

Moles of $X = 2 \times \text{moles of } X_2O_5$

$$\frac{2.0769}{M_X} = \frac{2 \times 3.6769}{2M_X + 80}$$

Calculate M_x and then moles = $\frac{2.0769}{M_{_{\rm X}}}$.

144.(A) Water is liquid at the given T & P.

 \therefore Volume of 20g of H₂O 20 ml.

$$\textbf{145.(D)} \ \text{Avg} \ \ MQ = \frac{A_1 \times M_{Q97}}{100} + \frac{A_2 \times M_{Q14}}{100} = \frac{23.4 \times 8.082 \times 12}{100} + \frac{76.6}{100} \times 7.833 \times 12 = 94.695$$

146.(B) Here abundance of O^{18} , is more

 \Rightarrow Avg atomic mass will be close to that of O^{18}

Solutions | Workbook-1 1 Stoichiometry-I